Активация свободно-радикальных процессов в клетке


agropromishlennij-kompleks-ssha.html
agrotehnchn-tehnchn-vimogi-organchnih-dobriv.html

3.1. Сущность явления

Многие ксенобиотики, попав во внутренние среды организма, подвергаются метаболическим превращениям. Одним из возможных результатов метаболизма является образование реактивных промежуточных продуктов, многие из которых, появляются в форме свободных радикалов, т.е. на внешней орбитали молекулы метаболита находится неспаренный электрон. Центром образования такого радикала в молекуле могут быть атомы углерода, азота,

кислорода, серы. Взаимодействие этих реактивных метаболитов, либо вторичных продуктов их превращения, с молекулами-мишенями приводит к нарушению клеточных функций. Изменения в клетках могут быть следствием как избирательного повреждения какой либо одной биохимической структуры, так и сочетанного повреждения нескольких структурно­функциональных элементов. Достаточно часто в ходе исследований удается идентифицировать реактивный метаболит, изучить особенности его взаимодействия с молекулами-мишенями, оценить факторы облегчающие и модулирующие эти взаимодействия. Становиться все более очевидным, что многие реактивные промежуточные продукты метаболизма ксенобиотиков (рисунок 8):

Появление неспаренного электрона на внешней орбитали делает метаболит чрезвычайно реакционноспособным. Активные радикалы вступают внутри клетки в многочисленные реакции, в том числе, связываются с ненасыщенными жирными кислотами, отщепляют водород от других молекул, взаимодействуют друг с другом с образованием димеров и т.д.

Свободные радикалы, такие как анионы семихинонов, азо-анионы, анионы нитроароматических соединений, биспиридиниевые катионы, могут активировать молекулярный кислород путем одновалентного восстановления последнего до супероксид-аниона (Ог'). Супероксид при взаимодействии с водой с большой скоростью дисмутирует с образованием перекиси водорода (Н2О2) и чрезвычайно активного оксиданта - гидроксильного радикала (*ОН). Некоторые металлы с переменной валентностью (медь, железо) способны катализировать в организме реакции такого типа. Эти, так называемые, вторичные радикалы представляют высокую опасность для клетки. Обладая достаточной стабильностью, они взаимодействуют с самыми разными биомолекулами, и не только повреждают их, но и провоцируют цепные реакции дальнейшего образования активных радикалов из липидов, аминокислот, нуклеиновых кислот и т.д. Интегральный эффект такого каскада радикал- инициирующих реакций приводит к значительному нарушению физиологии клетки, её повреждению. На макроскопическом уровне это проявляется некрозом ткани, развитием фиброза в пораженных органах, а в отдаленный период - появлением новообразований (рисунок 10).

3.2. Механизмы клеточной антирадикальной защиты

Свободные активные радикалы в норме в клетке образуются постоянно. Так, в процессе метаболизма веществ в гладком эндоплазматическом ретикулумефлавопротеины, а в митохондриях окислительные энзимы цепи дыхательных ферментов, постоянно продуцируют некоторое количество супероксид-иона (Ог*) и перекиси водорода (Н2О2). Однако содержание в клетке этих и других радикалов жестко контролируются широким спектром биохимических инструментов антирадикальной защиты, включая супероксиддисмутазу, катал азу, GSH- пероксидазу, GSSG-редуктазу, «-токоферол, 1-каротин, аскорбиновую кислоту, восстановленный глутатион, мочевую кислоту. Отдельные элементы системы защиты действуют комплексно и потенцируют эффект друг друга. Они локализуются либо в гидрофобных, либо гидрофильных компартментах клеток (например, токоферол - липофилен, глутатион - гидрофилен).



Механизмы антирадикальной защиты включают как ферментативные, так и неферментативные процессы. Самым простым примером некаталитического разрушения радикалов является их гидролиз, лежащий в основе нейтрализации многих водорастворимых продуктов, например, ацилгалидов, эпоксидов, карбокатионов, изоцианатов, эписульфониум-иона и т.д.

Наиболее важной неферментативной реакцией "обезвреживания" радикалов является их взаимодействие с биологическими антиоксидантами, такими как витамин Е, глутатион, витамин С. В результате такого взаимодействия образуются нереакционноспособные вещества, прерывание каскад "наработки" свободных радикалов.

Гомеостаз в клетке поддерживается за счет равенства скоростей образования и связывания радикалов. В случае повреждения механизмов защиты клеток, либо активации процессов образования радикалов, превосходящих по интенсивности возможности защиты, или даже разрушающих эти механизмы, развивается поражение клетки. Так, интоксикация преимущественным пульмонотоксикантомпаракватом приводит к некоторому снижению содержания глутатиона в печени. Предварительное связывание глутатионадиэтилмалеатом приводит к тому, что паракват приобретает свойства преимущественного гепатотоксиканта. Таким образом, резерв глутатиона в клетке имеет особое значение для обеспечения её антиоксидантной защиты.

Хотя глутатион может взаимодействовать с многочисленными субстратами и неферментативно, наличие в тканях энзима глутатион-8-трансферазы (GST) значительно ускоряет течение процесса, повышает его эффективность. Множественность форм GST, ихширокая субстратная специфичность, высокий уровень активности в различных тканях делают систему глутатионтрансфераз наиболее универсальной и значимой для связывания активных метаболитов.

Глутатион и селен-зависимые глутатионпероксидазы восстанавливают перекись водорода и другие гидроперекиси до менее токсичных алкоголя и воды. Глутатион-дисульфид, образующийся в ходе этой реакции, подвергается обратному восстановлению до глутатиона с помощью НАДФН-зависимой глутатионредуктазы. Активность глутатионредуктазы ингибируют изоцианат-содержащие продукты метаболизма нитрозомочевины.

Два других энзима, имеющих большое значение для детоксикации свободных радикалов, это супероксиддисмутаза (СОД) и катал аза. Первый из энзимов катализирует преобразование двух супероксидных радикалов в молекулу кислорода и перекись водорода. Обнаруживаемая во всех тканях СОД содержит в структуре активного центра ионы Си, Zn, Мн. Образующаяся перекись водорода разрушается с помощью катал азы или глутатионпероксидазного цикла.

33. Механизмы активации ксенобиотикови образования свободных радикалов

Ксенобиотики могут трансформироваться в радикалы как энзиматическим, так и неэнзиматическим путем. Например известны токсиканты, специфично повреждающие тела дофаминэргических и серотонинэргических нейронов ЦНС (6-гидроксидофамин и 5,7- дигидрокситриптпмин), I-клетки поджелудочной железы (аллоксан) и др., легко подвергающиеся аутоокислению с образованием активных радикалов (рисунок 11). Параллельно с самоокислением молекулы подобных ксенобиотиков осуществляется продукция реактивных форм кислорода.

Рисунок 11. Вещества, инициирующие свободно-радикальные процессы путем спонтанного окислительно-восстановительного превращения молекулы в клетках

Ионы металлов с переменной валентностью (медь, железо) облегчают процесс аутоокисления, а восстановители, например аскорбиновая кислота, обеспечивают регенерацию исходной формы ксенобиотика. Таким образом, формируется неэнзиматическийокислительно-востановительный цикл токсиканта. SH-соединения, никотиновая кислота в опытах invitroостанавливают процесс.

Ультрафиолетовые лучи активируют превращение (фотоактивация) накапливающихся в коже сульфаниламидных препаратов, 4-аминобензойной кислоты (рисунок 12) к др. в свободно­радикальную форму, которая, как полагают, ответственна за развитие фототоксических и фотоаллергических процессов у лиц, принимающих эти лекарства.

При лечении псориаза псораленом и его аналогами одновременно назначаемое длинноволновое ультрафиолетовое облучение (320 - 400 нм) кожи пациентов активирует превращение препаратов в свободно-радикальную форму. Активные радикалы повреждают измененные эпидермальные клетки, образуя фотоадцукты с пиримидиновыми основаниями их ДНК. Наступает ремиссия болезни, но побочным неблагоприятным эффектом является развитие в последующем меланом и сквамозноклеточной карциномы, так как в процессе лечения изменяется генетический код и некоторой части здоровых эпидермоцитов.

Однако основной путь образования свободных радикалов в клетке - энзиматический метаболизм ксенобиотиков (рисунок 13). Способность веществ метаболизировать с образованием радикалов обычно связывают с величиной их одноэлектронного восстановительного потенциала. Соединения с высоким сродством к электронам предрасположены к их акцепции и легко восстанавливаются биологическими системами, в то время как вещества с низким сродством к электрону восстанавливаются биосистемами плохо. Вещества, не вступающие в окислительно-восстановительный цикл не являются источниками образования свободных радикалов в клетках. Например, хлороформ (HCCI3)является слабым источником прооксидантных процессов из-за низкой способности к оденоэлектронному восстановлению. Напротив, четыреххлористый углерод (ССД) легко метаболизирует в трихлорметильный радикал (*СС1з), способный отнимать водородные атомы от ненасыщенных жирных кислот, и является инициатором перекисного окисления липидов. Кроме того *СС1з связывается с липидами микросомальных мембран, активирует кислород, который в свою очередь взаимодействует с макромолекулами (белками, нуклеиновыми кислотами). Восстановление четырёххлористого углерода до трихлорметилового радикала катализируется комплексом оксидаз смешанной функции, состоящим из флавопротеинов, НАДФН-зависимой Р-450 релуктазы, НАДН-цитохромbsредуктазы и оксидазы цитохрома Р- 450.

В процессе метаболизма адриамицина, митомицина С, нитрофурантиона, параквата и некоторых других ксенобиотиков образование промежуточных свободных радикалов идет при участии одной лишь НАДФН-зависимой цитохром Р-450-редуктазы. При этом образовавшиеся радикалы удается выявить только в жестких анаэробных условиях. В присутствии кислорода восстановленные радикалы быстро окисляются до исходной формы, при этом электроны переходят с радикала на молекулу кислорода, что приводит к образованию супероксидного аниона и других его реактивных форм и также активации свободно-радикальных процессов.

Очевидно, что если такой химический окислительно-восстановительный цикл превращения ксенобиотика будет продолжаться в течение достаточно длительного времени, механизмы клеточной защиты могут истощиться и произойдет повреждение клетки. Такая возможность вполне вероятна, поскольку известно, что супероксид-анион инактивирует супероксидцисмутазу, превращает аскорбиновую кислоту и токоферол, а гидроксильный радикал - угнетает глутатионпероксидазу.

Помимо гладкого эндоплазматического ретикулума оксидазы смешанной функции обнаружены в мембране ядра клетки. Поскольку эта мембрана окружает хроматин, активация здесь ксенобиотиков и образование свободных радикалов представляет угрозу ДНК, либо вследствие прямого взаимодействия метаболитов с нуклеиновыми кислотами, либо опосредованно, путем образования реактивных метаболитов кислорода или продуктов перекисного окисления липидов - компонентов ядерной мембраны.

Помимо упомянутых выше, в образовании активных радикалов могут принимать участие и другие энзимы. Так, ксантиноксидаза участвует в метаболизме адриамицина, нитрофурантиола, параквата до продуктов их одноэлектронного восстановления. Тирозиназа, в большом количестве содержащаяся в клетках меланом участвует в образовании многих реактивных метаболитов. Цитоплазматическая диафораза и простогландинсинтетаза облегчают формирование окислительно-восстановительного цикла трансформации параквата, ацетаминофена, бенз(а)пирена и т.д.

Таким образом, можно выделить несколько ключевых моментов, имеющих особое значение для реализации повреждающего действия ксенобиотиков на клетку, путем активации свободно-­радикальных процессов:

1, Образовавшись, радикал - промежуточный продукт может иметь несколько способов дальнейшего превращения, соотношение между которыми зависит от степени оксигенации клеток (тканей);

2, Усиленное образование свободных радикалов может начаться в нескольких независимых локусах клетки (эндоплазматическом ретикулуме, митохондриях, ядре, цитоплазме);

3, Активация ксенобиотиков до активных радикалов может стать следствием последовательного действия на токсикант нескольких ферментов;

4, Возможно неэнзиматическое образование свободных радикалов. Превращение одного из ксенобиотиков может активировать превращение другого. Так, блеомицин повреждает ДНК в присутствии митомицина С и т.д.

3.4. Биологические последствия активации свободно-радикального процесса в клетке

В результате образования свободных агрессивных радикалов повреждаются самые разные структуры-мишени: липидные мембраны, свободные аминокислоты, полисахариды,

нуклеиновые кислоты, рецепторные молекулярные комплексы, транспортные протеины. Итогом такого действия является изменение функционального состояния и гибель клетки, мутация её генетического кода, что, как уже указывалось, на уровне макроорганизма приводит к явлению массивной клеточной гибели (некроз), разрастанию соединительной ткани в органе (фиброз), мутагенезу, развитию новообразований в отдаленные периоды после действия токсиканта.

Характер повреждающего действия активных радикалов во многом определяется их стабильностью и расстоянием, на которое они могут мигрировать от места своего образования.

В соответствии с этими признаками реактивные метаболиты могут быть разделены на несколько групп.

Наивысшей реакционной способностью обладают промежуточные продукты, образующиеся в ходе так называемого "суицидного метаболизма". Эти продукты разрушают образующие их энзимы. К числу "суицидных" ингибиторов Р-450 относятся, в частности, винилгалогены, некоторые олифены, дигидропиридины, циклопропильные соединения.

Следующими по реакционной способности являются вещества, покидающие область локализации фермент-субстратного комплекса, но активно взаимодействующие с другими протеинами. Примерами веществ, действующих подобным образом, являются: ацилгалидный метаболит хлорамфеникола, электрофильный радикал серы, отщепляющийся в ходе метаболизма паратиона и т.д.

Менее реакционноспособными являются продукты, мигрирующие в другие локусы клеток и даже за их пределы. Эта группа метаболитов включает большинство промежуточных продуктов..? Подобные радикалы способны проникать через биологические мембраны. Это свойство присуще метаболитам бензапирена, бромбензола, диметилнитрозамина, винилхлорида, трихлорэтилена и т.д.

Еще меньшей раекционной способностью обладают метаболиты, способные выходить за пределы органов, в которых они образуются, и повреждают другие органы и ткани. Примерами этой группы метаболитов являются: метаболит гексана - 2,5-гександион, вызывающий периферическую нейропатию, пирролизидиновых алкалоидов - пирролы, мигрирующие из печени в легкие, где действуют на эндотелий сосудов, эпоксиды 4- винилциклогексана, вызывающие поражение яичников.

Борьба с ацидозом и нормализация водно-электролитного баланса предусмотрены в современных схемах оказания помощи при интоксикациях. Дыхательный и метаболический ацидозы наиболее часто регистрируются при острых отравлениях. При ацидозе нарушается кислотно-щелочное равновесие: происходит сдвиг реакции крови в кислую сторону. При проведении коррекции кислотно-щелочного равновесия поступают различно. Для борьбы с ацидозом, обусловленным дыхательной недостаточностью, с успехом используют ЙВЛ. Для устранения ацидоза, обусловленного нарушением метаболизма, прибегают к внутривенному введению щелочных растворов (4-8%-ый раствор гидрокарбоната и лактата натрия, аминобуферов и др.). Это, однако, не означает, что выполнять ЙВЛ и вводить буферные растворы нельзя комплексно. Например, паралич дыхания приводит, с одной стороны, к развитию дыхательного ацидоза из-за задержки в организме углекислоты, а с другой - к развитию метаболического ацидоза вследствие гипоксемии. Поэтому при проведенииреанимационных мероприятий таким больньм параллельно с искусственным дыханием необходимо внутривенно вводить щелочные растворы.

При острых отравлениях и электролитных сдвигах чаще всего наблюдается гипокалиемия. При некоторых отравлениях (этиленгликолем, щавелевой кислотой и ее производными, нитратом натрия и др.) возможно также снижение уровня кальция в плазме крови.

В связи с тем, что падение содержания калия и кальция в плазме периферической крови 5 может привести к различного рода нарушениям, и в первую очередь нарушениям функции

сердца, при оказании медицинской помощи и последующем лечении больных с острыми отравлениями необходимо: во-первых, периодически осуществлять контроль за уровнем основных катионов (К, Са, Na) в плазме периферической крови, и во-вторых, при необходимости своевременно проводить коррекцию выявленных сдвигов в электролитном балансе за счет внутривенного введения хлористого калия, хлористого кальция на изотонических растворах хлористого натрия или глюкозы.




akkreditaciya-organov-po-sertifikacii-i-ispitatelnih-laboratorij-centrov.html
akkreditaciya-organov-po-sertifikacii-i-ispitatelnih-laboratorij.html
akkreditaciya-organov-po-sertifikacii.html
akkreditivnaya-forma-raschyotov-s-predvaritelnim-deponirovaniem-sredstv.html
akkulturaciya-v-mezhkulturnih-vzaimodejstviyah.html
ч     PR.RU™